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Abstract

Conflicts in database systems with both real-time and security requirements can
sometimes be unresolvable. We attack this problem by allowing a database to have
partial security in order to improve on real-time performance when necessary. By
our definition, systems that are partially secure allow security violations between
only certain levels. We present the ideas behind a specification language that allows
database designers to specify important properties of their database at an appropri-
ate level. In order to help the designers, we developed a tool that scans a database
specification and finds all unresolvable conflicts. Once the conflicts are located, the
tool takes the database designer through an interactive process to generate rules for
the database to follow during execution when these conflicts arise. We briefly
describe the BeeHive distributed database system, and discuss how our approach
can fit into the BeeHive architecture.
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1  INTRODUCTION

A real-time system is one whose basic specification and design correctness
arguments must include its ability to meet its timing constraints. This implies that
its correctness depends not only on the logical correctness, but also on the timeli-
ness of its actions. To function correctly, it must produce a correct result within a
specified time, called deadline. In these systems, an action performed too late (or
even too early) may be useless or even harmful, even if it is functionally correct
[16]. If timing requirements coming from certain essential safety-critical applica-
tions would be violated, the results could be catastrophic.

Traditionally, real-time systems manage their data (e.g. chamber temperature,
aircraft locations) in application dependent structures. As real-time systems evolve,
their applications become more complex and require access to more data. It thus
becomes necessary to manage the data in a systematic and organized fashion. Data-
base management systems provide tools for such organization. The resulting inte-
grated system, which provides database operations with real-time constraints is
generally called a real-time database system.

In many of these applications, security is another important requirement, since
the system maintains sensitive information to be shared by multiple users with dif-
ferent levels of security clearance. As more and more of such systems are in use,
one cannot avoid the need for integrating them. Not much work has been reported
on developing database systems that support both requirements of multilevel secu-
rity and real-time. In this paper, we address the problem of supporting both require-
ments of real-time and security, based on the notion of partial security.

1.1  Real-time Database Systems

Real-time database systems extend the set of correctness requirements from
conventional database systems. Transactions in real-time systems must meet their
timing constraints, often expressed as deadlines, in order to be correct. In stock
market applications and automated factories, a poor response time from the data-
base can result in the loss of money and property. In many real-time database sys-
tems, transactions are given priorities, and these priorities are used when
scheduling transactions. In most cases, the priority assigned to a transaction is
directly related to the deadline of the transaction. For example, in the Earliest Dead-
line First scheduling algorithm, transactions are assigned priorities that are directly
proportional to their deadlines; the transaction with the closest deadline gets the
highest priority, the transaction with the next closest deadline gets the next highest
priority, and so on. One important goal of a real-time transaction scheduler is to
minimize or eliminate the number of priority inversions -- situations where a high
priority transaction is forced to wait for a lower priority transaction to complete. As
we shall see below, it is this goal that comes in conflict with security requirements.

1.2  Multilevel Secure Database Systems



Multilevel secure database systems have a set of requirements that are beyond
those of conventional database systems. A number of conceptual models exist that
specify access rules for transactions in secure database systems. One important
such model is the Bell-LaPadula model [1]. In this model, a security level is
assigned to transactions and data. A security level for a transaction represents its
clearance level; for data, the security level represents the classification level. Trans-
actions are forbidden from reading data at a higher security level, and from writing
data to a lower security level. If these rules are kept, a transaction cannot gain direct
access to any data at a higher security level.

However, system designers must be careful of covert channels. A covert channel
is an indirect means by which a high security clearance process can transfer infor-
mation to a low security clearance process [7]. If a transaction at a high security
level collaborates with a transaction at a lower security level, information could
flow indirectly. For example, say that transaction Ta wished to send one bit of infor-
mation to transaction Tb. Ta has top secret clearance, while Tb has a lower clear-
ance. If Ta wishes to send a “1”, it locks some data item previously agreed upon.
(This data item could be one that is created specifically for this covert channel by
Ta.) If Ta wishes to send a “0”, it does not lock the data item.   Then, when Tb tries
to read the data item and finds it locked, it knows that Ta has sent a “1”; otherwise,
it knows that Ta has sent a “0”. Covert channels may use the database system’s
physical resources instead of specific data items.

One sure way to eliminate covert channels is to design a system that meets the
requirements of non-interference. In such a system, a transaction cannot be affected
in any manner by a transaction at a higher security level. In other words, a subject at
a lower access class should not be able to distinguish between the outputs from the
system in response to an input sequence including actions from a higher level sub-
ject and an input sequence in which all inputs at a higher access class have been
removed [7]. For example, a transaction must not be blocked or preempted by a
transaction at a higher security level.

1.3  Integration of Real-time and Security Requirements

The requirements of real-time systems and those of security systems are often
in conflict [11]. Frequently, priority inversion is necessary to avoid covert channels.
Consider a transaction with a high security level and a high priority entering the
database. It finds that a transaction with a lower security level and a lower priority
holds a write lock on a data item that it needs to access. If the system preempts the
lower priority transaction to allow the higher priority transaction to execute, the
principle of non-interference is violated, for the presence of a high security transac-
tion affected the execution of a lower security transaction. On the other hand, if the
system delays the high priority transaction, a priority inversion occurs. The system
has encountered an unresolvable conflict. In general, these unresolvable conflicts
occur when two transactions contend for the same resource, with one transaction



having both a higher security level and a higher priority level than the other. There-
fore, creating a database that is completely secure and strictly avoids priority inver-
sion is not feasible. A system that wishes to accomplish the fusion of multi-level
security and real-time requirements must make some concessions at times. In some
situations, priority inversions might be allowed to protect the security of the system.
In other situations, the system might allow covert channels so that transactions can
meet their deadlines.

There are other factors, besides security enforcement, that could degrade the
timeliness of the database system. For example, transient overload or failure of cer-
tain components could impact the system performance. However, regardless of the
reason for impaired timeliness, relaxing security requirements always provide a
positive impact on the system performance.

1.4  Our Approach

Our approach to this problem of conflicting requirements involves dynamically
keeping track of both the real-time and the security aspects of the system perfor-
mance. When the system is performing well and making a high percentage of its
deadlines, conflicts that arise between security and real-time requirements will tend
to be resolved in favor of the security requirements more often, and more priority
inversions will occur. However, the opposite is true when the real-time performance
of the system starts to degrade. Then, the scheduler will attempt to eliminate prior-
ity inversions, even if it means allowing an occasional covert channel.

Semantic information about the system is necessary when making these deci-
sions. This information could be specified before the database became operational
using a specification language. In this language, users would be able to express the
relative importances of keeping information secure and meeting deadlines. Specifi-
cations in this language could then be “compiled” by a pre-processing tool. After a
successful compilation, the system should be deterministic in the sense that an
action must be clear for every possible conflict that could arise. This action might
depend on the current level of real-time performance or other aspects of the system.
Any ambiguities would be caught at compile time, causing the compilation to be
unsuccessful. The compilation of the specification produces output that can be
understood and used by the database system.

The problem of accomplishing the union of security and real-time requirements
becomes more complicated in a distributed environment. In a distributed environ-
ment, having a single entity keep track of system performance in terms of timeli-
ness and security for the entire global database could be impractical for a number of
reasons. Requiring transactions to report to this performance monitor after every
execution could put more load on the network and have a negative impact on per-
formance. The node that contained the performance monitor would be a “hotspot”
and might introduce a performance bottleneck. These problems would be serious as
the system got bigger, so such a solution would have a limited scalability. This
brings up an interesting question: Is it better to have many performance monitors,



each responsible for a small part of the database, or to have fewer of them, each
with a larger domain? In other words, what granularity of the system should the
performance monitors be responsible for? In our approach, there is a performance
monitor responsible for every node. One of the issues to be addressed in a system
with multiple performance monitors is how to optimize the database globally with
only local knowledge. In our approach, this is accomplished through communica-
tion between performance monitors at each node.

In the next section, we describe some related works in the areas of specifying
real-time and secure requirements for database systems, distributed security mod-
els, and some previous work in combining the requirements of real-time and secure
database systems. Section 3 describes the partial security policy, the ideas behind
the specification language, and the tool to analyze the language. In Section 4, we
describe how our approach will fit into BeeHive, a distributed database system with
real-time, security, quality of service, and fault-tolerance requirements. Section 5
concludes the paper with a discussion of future work.

2  RELATED WORK

There has been much work on specifying security requirements. One approach
is using the security constraint classification system [13], in which the authors clas-
sified a number of security constraints. Nine different categories are given, ranging
from the simple, usual constraints to constraints that classify the database depend-
ing on the content or security level of data. Constraints can also depend on real-
world events, information that has been previously released, and can classify asso-
ciations between data, collections of data, and even other constraints. The current
version of the tool reported in this paper does not provide such a flexible specifica-
tion, but eventually, we need to support a complete security constraint classification
for each application.

Several methods of specifying real-time requirements also exist. For example, a
real-time specification method of activity and data graphs, is presented in [8]. The
fundamental building block in this design is called an atomic activity. This specifi-
cation system does employ some clever techniques to group and relate these atomic
activities through graphs. An activity, which is defined as a set of computations, can
be viewed as a transaction. Atomic activities are given a set of properties that
include name, preconditions, postconditions, preemptability, state variables, impor-
tance level, timing constraints, resource requirements, and behavior. The activities
are also given temporal properties, such as arrival time, ready time, scheduling
deadline, completion deadline, execution time, starting time, and completion time.
Our model for the specification of real-time properties was influenced by these
methods, and is probably closest to the model for the atomic activities. However,
some of the properties used in that model were not necessary in ours, and we
needed to add a couple of properties not present in the atomic activity model.

There have been attempts to define security protocols in distributed, object-ori-
ented environments. Two examples are Legion [15] and CORBA [3]. However, we



are not aware of any previous attempts to satisfy both security and real-time
requirements in a distributed, object-oriented environment. George and Haritsa
studied the problem of combining real-time and security requirements [5]. They
examined real-time concurrency control protocols to identify the ones that can sup-
port the security requirement of non-interference. This work is fundamentally dif-
ferent from our work because they make the assumption that security must always
be maintained. In their work, it is not permissible to allow a security violation in
order to improve on real-time performance.

3  SPECIFICATION

In this section, we first outline the approach to defining partial security. We then
provide the details of specifying different rules for the database system.

3.1  Partial Security

As explained above, our approach will at times call for a violation of security in
order to uphold a timeliness requirement. When this happens, the system will no
longer be completely secure; rather, it will only be partially secure. One of the
major research questions to be addressed is to identify quantitative partial security
levels and to develop methods for making trade-offs for real-time requirements.
Traditionally, the notion of security has been considered binary. A system is either
secure or not. A security hole either exists or not. The problem with such binary
notion of security is that in many cases, it is critical to develop a system that pro-
vides an acceptable level of security and risks, based on the notion of partial secu-
rity rather than unconditional absolute security, to satisfy other conflicting
requirements. In that regard, it is important to define the exact meaning of partial
security, for security violations of confidential data must be strictly controlled. A
security violation here indicates a potential covert channel, i.e., a transaction may
be affected by a transaction at a higher security level.

One approach is to define security in terms of a percentage of security viola-
tions allowed. However, the value of this definition is questionable. Even though a
system may allow a very low percentage of security violations, this fact alone
reveals nothing about the security of individual data. For example, a system might
have a 99% security level, but the 1% of insecurity might allow the most sensitive
piece of data to leak out. For serious secure database applications, a more precise
metric would be necessary.

A better approach involves adapting the Bell-LaPadula security model and blur-
ring boundaries between security levels in order to allow partial security. In this
scheme, only violations between certain security levels would be allowed. As the
real-time performance of the system degrades, more and more boundaries can be
blurred, allowing more security violations and reducing the number of security con-
flicts. Since there are less conflicts, this can improve the real-time performance of
the system. Additionally, with this scheme, we can still make guarantees about the



security of the data.See Figure 1 for an example. Here, we are considering a system
with four security levels: top secret, secret, confidential, and unclassified. In Figure
1a, the system is completely secure. Figures 1b through 1d show systems that are
partially secure, progressing from more secure to completely insecure. Solid lines
between security levels indicate that no violations are allowed between the levels;
dashed lines indicate that violations are allowed. For example, in Figure 1b, trans-
actions that are at the unclassified level may have conflicts with transactions at the
confidential level in accessing to unclassified data, resulting in a potential covert
channel.

It is possible to combine this approach with the use of percentages to define par-
tial security. Then, the amount of security violations between two levels for which
the boundary had been blurred would be required to fall below this percentage. The
above example is really a special case of this scheme, where the percentage can
either be 0% or 100%. Note that no guarantees can be made between levels that
have been assigned a non-zero percentage. Guarantees can still be made between
levels designated as allowing 0% security violations; for the other levels, database
designers can use different percentages to denote their preferences on where they
would rather have the potential security violations occur.

For certain applications in which absolute security is required for safety-critical
applications, any trade-offs of security for timeliness must not be allowed. The idea
of partial security discussed in this paper cannot be used in such applications. Even
if partial security is acceptable to an application, the system designer should be
careful in identifying the conditions under which it might be dangerous to compro-
mise the security. For example, some sort of denial of service attack could force the
system into a condition where timeliness constraints are not satisfied. The system
can limit the potential damage by setting up rules that can identify the situation and
take appropriate actions, if necessary. For example, the system may audit the possi-
ble covert channels and log any activity that might be exploring the channel. The
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rules can utilize the notion of encrypted profile to either look for patterns of illegal
access or, alternatively, to certify a good pattern of access.

3.2  Specification Methods

Application designers should be able to specify semantic information using a
specification language to express the relative importance of keeping desired level of
security and meeting timing constraint requirements. A question to be addressed in
that approach is the verification of the given specification. Specifications should be
compiled and verified to check any inconsistency in the requirements and to clearly
determine the necessary actions to be taken. We developed a specification language
that allows designers to generate rules at varying levels of detail. We have also
developed a tool to analyze the specification to identify any inconsistency and pro-
duce semantic information and rules that will be maintained by the database sys-
tem. The approach to specifying the security and real-time requirements is a pre-
processor that aids the database designer first with locating conflicts and then with
denoting their preferences according to the semantics of the database. First, we will
give the details of the specification language. We will then go through a few exam-
ples to illustrate the ideas.

3.2.1  Specification Language
Our specification language allows designers to create rules at varying levels of

detail. In applications where much information is known about the database before-
hand, designers can control security and real-time aspects of the database much
more tightly than in situations where less is known beforehand or such a tight con-
trol is not required. There are three levels of detail in this specification scheme.
Note that one system can use rules from all three levels if needed.

The specification consists of two parts: a description of the database and a set of
rules to follow when conflicts arise. The description provides a framework for the
rules. As we shall see below, the specification of both the description and the rules
varies between the different levels of details. Regardless of the levels of details that
are used, the first part of the specification contains facts about the database as a
whole. Here, designers specify the number of data items, the number of security
levels, and the number of priority levels used in the entire database.

In the first, most detailed level, designers can make rules for specific transac-
tions.  Transactions are given a number of components.  Each transaction is given a
readset and a writeset.  These can consist of any number of data items.  If no readset
or writeset is given, they are assumed to be empty.  The real-time requirements of a
transaction are given by four variables:  priority, execution time, release time, and
periodicity.  The periodicity of a transaction defines how often it starts executing,
and the release time indicates the offset of the periodic start.  Finally, transactions
are given a security level.

Information about data can also be specified.  Data items are specified by num-
ber, and each data item is given a security level.  The specification can also contain



a default security level, which is assigned to any unspecified data items.  All of this
information about transactions and data belong in the description portion of the
specification.

Not all of these components for transactions and data items are required. In gen-
eral purpose database systems, some of the information might be hard to specify.
However, in many real-time applications, most information is available, since such
information is necessary for schedulability analysis of the system to support the
timeliness and predictability requirements. In fact, in real-time database systems,
many transactions are periodic and their access pattern is known. The only truly
necessary components are the security level and the priority level. If a designer
leaves out, for example, the readset or the writeset, the preprocessor tool (discussed
below) cannot make any assumptions about the data accessed by this transaction, so
it must assume that the transaction may conflict with every other transaction.

Next, the database designer comes up with rules that define the actions that the
system must take when the transactions conflict.  These rules can either be static or
dynamic.  Static rules apply to conflicts that are resolved in the same way every
time.  For example, the user might specify that a conflict between two specific
transactions, or two categories of transactions, will never result in a security viola-
tion.

Dynamic rules can depend on certain run-time variables that the database keeps
track of during execution. Currently, dynamic rules can be based on three different
dynamic variables: security violation percentage, transaction miss percentage (the
percentage of transactions that have missed their deadlines), and the number of con-
secutive missed deadlines. Each dynamic rule has a list of clauses and a default
action. A clause contains a boolean relation (>, >=, =, <, or <=) between one of
these three dynamic variables and a constant value. Each clause also contains the
action (either violate security or violate priority) to be taken if the boolean relation
is true. When a conflict is encountered by the database system, it checks the first
clause. If that clause is true, it takes the associated action. If not, it checks the next
clause. If none of the clauses turn out to be true, the database takes the default
action. For example, a rule might be “If the security violation percentage is greater
than 5, violate security. Otherwise violate timeliness.” Here, the “otherwise” sen-
tence represents the default action.

In a distributed environment, when conflict occur between transactions execut-
ing at different nodes, the action taken may need to depend on the performance at
all the nodes. In that case, rules should be created that take into account the statis-
tics on every nodes involved in the transaction. Every rule should have a “partner”
rule, covering this contingency. This rule might also take into account the latency
between the nodes at which the conflicting transactions are being executed.

The second level of specification detail replaces specific transactions with cate-
gories of transactions. Transactions are categorized by their security levels and pri-
ority levels. The designer can create any number of categories at any granularity
that he or she feels is appropriate, and describes these categorizations in the
description portion of the specification. Then, rules are created for conflicts



between categories of transactions. These rules are the same as the rules for the first
level.

In the third level of specification, designers create a set of rules describing
actions to take in case of conflicts.  Here, the conflicts are not specific; the same
rule set is consulted for every conflict.  Conditions would depend on the character-
istics of the transactions that are conflicting or the current performance statistics.
Depending on the results of the comparison, the rule would mandate either a secu-
rity violation or a priority violation.  All of this information belongs in the rules
portion of the specification; nothing is needed in the description portion.

By carefully creating the rules, database designers can implement the partial
security scheme described in the previous section. As with many other aspects of
designing these rules, a tool can help designers carefully model their partial secu-
rity system.

Description:

numDataItems 5;
numSecurityLevels 4;
numPriorityLevels 4;

data[default].security = 1;
data[3].security = 2;

ComputeProfit.readset = 1, 2, 3, 4;
ComputeProfit.writeset = 5;
ComputeProfit.periodicity = 12;
ComputeProfit.priority = 3;
ComputeProfit.security = 3;

UpdatePrice.writeset = 3;  # Two transactions access data item 3.
UpdatePrice.periodicity = 30;
UpdatePrice.security = 2;
UpdatePrice.priority = 2;

Rule for ComputeProfit-UpdatePrice conflict:

(SecViolation% >= 5) ~ violateTimeliness,
(TransMiss% > 10) ~ violateSecurity,
(otherwise) ~ violateTimeliness;

((LocTransMiss% <= 15) & (RemTransMiss% <= 10)) ~ violateTimeliness,
((LocSecViolation% < 10) & (RemSecViolation < 10)) ~ violateSecurity
(otherwise) ~ violateTimeliness;

Figure 2   Specification example with detail level 1



Specifications are not required to solely use one of these levels of details. The
descriptions and rules for these detail levels can be mixed. In this case, when the
database encounters a conflict during execution, it first searches to see if a level 1
rule applies. If not, it searches the level 2 rules, and finally checks the level 3 rules.

3.2.2  Examples
Figure 2 shows an example of a system completely specified with detail level 1.

This is a small example, with only two transactions. Every relevant component of
these transactions has been specified. Both transactions access data item 45, and
ComputeAverage writes to it, so we have a potential conflict. Since ComputeAver-
age has both a lower security level and a lower priority level than SampleTransac-
tion, this conflict cannot be resolved without causing either a covert channel or a
priority inversion. Had ComputeAverage been given a higher priority than Sample-
Transaction, we can satisfy both requirements by allowing ComputeAverage to pre-
empt SampleTransaction. Alternatively, if ComputeAverage had a higher security
level than SampleTransaction, then both requirements could be satisfied by forcing
ComputeAverage to wait for Sample transaction. As will be seen in the next sec-
tion, the task of locating such conflicts can be automated.

There are two rules for this conflict -- the local rule and the non-local rule. In
the rule specification, SecViolation% indicates the percentage of security vio-
lations and TransMiss% indicates the percentage of deadline miss ratio. Each
rules consists of a condition and a decision. The condition part of a rule is stated
inside the parenthesis and followed by the decision after tilde (~). Conditions can
be connected by logical AND (&) of OR (|). In the local rule, the first line repre-
sents a security crisis. If more than 5 percent of transactions have violated security,
then this transaction cannot afford to, so it must violate timeliness. If the condition
in the first line is false, the condition in the next line is checked. This line represents
a real-time crisis. If more than 10 percent of transactions have missed their dead-
lines, then the real-time performance is suffering, so this transaction must violate
security. Again, if the condition in this second line is false, the next line is checked.
Here, this line is the “catch-all” rule. If none of the above rules apply, the database
is instructed to violate timeliness.

The non-local rule operates in much the same way. The first line in this rule rep-
resents a state in which the real-time performance of the system is at an acceptable
level either locally or at the remote site. If either condition is satisfied, the database
is instructed to violate timeliness. If the real-time performance is not at an accept-
able level, the system checks the second line of the rule to determine if the security
of the system is acceptable. If so, it violates security; if not, it moves on to the third,
“catch-all” line and violates timeliness.



 Figure 3 shows an example specification with mixed levels of detail (the data-
base description is not shown). There are two transactions specified using detail
level 1, but with only the bare minimum number of components specified. These
transactions are the same as those used in figure 2. There are also a couple of trans-
action categories, relating to high and low security transactions. Also, there is an
example of a level 3 rule set.

The rules for the conflict between the specific transactions is specified in the
same manner as in the previous example. Here, we see the specification for con-
flicts between two transaction categories. These also are specified in the same man-
ner.

This specific level 2 rule is also an example of a static rule -- every time that
transactions in these two categories conflict, the database must violate priority and
uphold security. Rules for violations between specific transactions and transaction
categories can be specified, if the database designer so desires. Finally, we see a
rule set for detail level 3. If none of the rules in level 1 or level 2 apply to a conflict
encountered by the database, it determines the course of action by consulting this
ruleset. Again, these are specified in the same manner, with the exception that a
couple of new variables can be used. The variable priorityLevelDifference repre-
sents the difference in the priority levels of the two transactions; securityLevelDif-
ference does the same for security levels

In Figure 4 we give an example of a rule that deals with multiple conflicts. This

Rule for SampleTransaction-ComputeAverage conflict:

(SecViolation% >= 5) ~ violateTimeliness,
(TransMiss% > 10) ~ violateSecurity,
(otherwise) ~ violateTimeliness;

((LocTransMiss% <= 10) | (RemTransMiss% <= 5)) ~ violateTimeliness,
((LocSecViolation% < 10) & (RemSecViolation < 10)) ~ violateSecurity,
(otherwise) ~ violateTimeliness;

Rule for HighSecurityCategory-LowSecurityCategory conflict

(otherwise) ~ violateTimeliness;

Level 3 rules:

(SecViolation% < 10) ~ violateSecurity,
(TransMiss% < 15) ~ violateTimeliness,
(priorityLevelDifference >= 2) ~ violateSecurity,
((TransMiss% > 10) & (SecViolation% <= 10)) ~ violateSecurity,
(otherwise) ~ violateTimeliness;

Figure 3   Example of mixed level specification



rule is interpreted much like the level 3 rules. In the first line, the database has
allowed a high number of security violations in the past, so the rule commands the
database to execute the transaction with the lowest security in order to avoid all
covert channels. The second line deals with a database that has allowed too many
transactions to miss their deadlines; here, the database will execute the transaction
with the highest priority. If the database does not have a real-time or security crisis,
then the transaction that has been waiting the longest will execute.,

3.3  Tool Implementation

When the pre-processor executes, the description portion of the specification is
read and stored in internal data structures.  The processor checks for syntax errors
and, if no errors are found, it analyzes the specification and finds all potential con-
flicts between the security and real-time requirements.  For completely specified
level one descriptions, in order for two transactions to conflict, the following must
be true:

1.They must both access the same data item.
2.At least one of the transactions must write to the data item.
3.One transaction must be at a higher security and priority level than the

other.
4.The execution times of the transactions must intersect.

Every pair of transactions that satisfy these conditions are reported to the user.
Of course, in less detailed descriptions, not all of these rules apply.  For example, if
the readset or writeset of one of the transactions is left unspecified, then the first
two rules do not apply.  If the timing information is incomplete for one of the trans-
actions, the last rule does not apply.  For level 2 categories, all categories might
conflict, so every possible pair of categories is reported to the designer.

The user then goes through an interactive process to create rules that capture the
requirement for the databases actions when these conflicts are encountered. For
each conflict, the pre-processor advises the user about the implications of violating
security with regard to the scheme of partial security described above. For example,
in the case of a four level secure database, if a conflict occurs between transactions
at the top secret level and the unclassified level, allowing a security violation would
force the database into the situation of Figure 1d.

Armed with this information, the user now creates the rules for the database to
follow during execution. Rules are created as explained above. The rules for detail
level 3 are also inputted now. Note that since level 3 rules do not require any entries

(SecViolation% >= 10) ~ executeLowestSecurity,
(TransMiss% > 10) ~ executeHighestPriority,
(otherwise) ~ executeOldestTransaction;

Figure 4 - Example of rule for conflicts of three or more transactions.



into the description portion of the specification, a database that contains rules only
of level 3 will not use the description analyzer stage of the tool. Once the user has
finished providing the rules, the pre-processor verifies that it can determine an
action to take in any possible situation. If this is not the case, the tool finds and
reports the weakness in the specification. When the specification has no remaining
weaknesses, the pre-processor creates an output file that contains the choices of the
user. This file will be referenced by the database during system execution.

4  FUNCTIONING IN A DISTRIBUTED ENVIRONMENT

In order to examine the distributed properties of this system further, we put it
into the context of the BeeHive system, which is a distributed database system
being designed with requirements beyond those of real-time and security. First, we
give an overview of the BeeHive system, and then we present how our approach fits
into the BeeHive architecture. Note that we use BeeHive as one possible distributed
setting to implement our approach. The actual security subsystem of BeeHive can
be different from the approach we present in this paper.

4.1  BeeHive Overview

The BeeHive project at the University of Virginia [10] is an attempt to build a
global virtual database with real-time, security, fault-tolerance, and quality of ser-
vice. The BeeHive system is composed of native BeeHive sites, legacy sites ported
to BeeHive, and interfaces to legacy systems outside of BeeHive. For the purposes
of this paper, we will focus on the native BeeHive sites.

Figure 5 shows the basic design of a native BeeHive site. At the application
level, users can submit transactions, analysis programs, general programs, and
access audio and video data. For each of these activities the user has a high level
specification interface for real-time, QoS, fault tolerance, and security. As transac-
tions (or other programs) access objects, those objects become active and a map-
ping occurs between the high level requirements specification and the object API
via the mapping module. This mapping module is primarily concerned with the
interface to object wrappers and with end-to-end issues. A novel aspect of the work
is that each object has semantic information (also called reflective information
because it is information about the object itself) associated with it that makes it pos-
sible to simultaneously satisfy the requirements of time, QoS, fault tolerance, and
security in an adaptive manner. For example, the information might include rules or
policies and the action to take when the underlying system cannot guarantee the
deadline or level of fault tolerance requested. This semantic information also
includes code that makes calls to the resource management subsystem to satisfy or
negotiate the resource requirements. The resource management subsystem further
translates the requirements into resource specific APIs such as the APIs for the OS,
the network, the fault tolerance support mechanisms, and the security subsystem.

The resource manager of BeeHive, referred to as the “BeeKeeper”, is the central



entity of the resource management process. The main function of the BeeKeeper is
the mapping of service-specific, possibly qualitative, QoS requirements into actual,
quantitative, resource requests. The BeeKeeper contains an Admission Controller, a
Resource Manager, and a Resource Allocation Module. The Admission Controller
decides whether BeeHive has sufficient resources to support the requirements of a
new transaction without compromising the guarantees made to currently active
transactions. The Resource Allocation Module is responsible of managing the inter-
face of BeeHive to underlying resource management systems of BeeHive compo-
nents. The Resource Planner attempts to globally optimize the use of resources.
The Admission Controller of the BeeKeeper merely decides whether a new applica-
tion is admitted or rejected. Obviously, such a binary admission control decision
leads to a greedy and globally suboptimal resource allocation. The Resource Plan-
ner is a module to enhance the admission control process and to yield globally opti-
mal resource allocations.
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Figure 5   Design of a native BeeHive site



4.2  Supporting Real-time and Partial Security in BeeHive

Along with the security and real-time requests of the transactions, the mapper
conveys the identity of the transaction and its timestamp to each of the objects that
it invokes. The timestamp is necessary to identify this specific instance of the trans-
action. This information is stored with the other semantic information of the object,
and is conveyed to the Resource Manager through the APIs.

The real-time and security APIs allow the objects being used by transactions to
convey their requirements to the resource manager. In all cases besides rules deal-
ing with detail level 1, this is all the information about the transaction needed by the
resource manager to make decisions when conflicts arise. However, in detail level
1, the resource manager needs to be aware of the identity of the transaction for
which the object is executing. This information can be conveyed through either the
security or the real-time API.

The admission controller will be a natural choice for the agent that detects con-
flicts that require the violation of either real-time or security requirements; i.e., a
conflict between a high priority, high security transaction and a low-priority, low
security transaction. All other conflicts are easy to resolve, and can be handled by
the Admission Controller. However, for these special conflicts, the decision is dele-
gated to the Resource Planner; this is the entity that contains and executes the rules
created by the database designer.

When a transaction encounters a conflict, the Admission Controller decides
(perhaps after consulting the Resource Planner) which of the two transactions is
allowed to continue execution and which must be delayed. The delayed transaction
is placed in a queue associated with the executing transaction. Once that transaction
is finished, the delayed transaction may begin execution. If two transactions are
waiting on the queue, the Admission Controller consults the rule covering this con-
flict and allows one of the transactions to proceed. If more than two transactions are
on the queue, and the rules do not support the execution of one of the transactions
over all the other transactions, then the Admission Controller must consult the rule
that deals with this situation.

The performance monitor fits best into the Resource Allocation Module. This
module is closest to the resources that the statistics are representing. The feedback
on resource usage that the Resource Allocation Module provides to the Resource
Planner is useful for other BeeHive functions, such as for QoS and fault tolerance
requirements. For our purposes, the Resource Allocation Module must keep track
of the percentage of transactions that have committed a security violation or missed
a deadline.

As we have seen, when conflicts occur between nodes, the action taken can
depend on the performance at both nodes. Therefore, some sort of cooperation and
exchange of statistics must occur between the resource managers of the nodes. In
the BeeHive model, the resource managers at different nodes should communicate
with each other; this will be necessary not only for our purposes, but also for the
resource reservation necessary for QoS guarantees.



At first glance, this scheme seems to locally optimize the database, rather than
globally optimizing it.  However, when examined more closely, this node-by-node
optimization may be preferable to a global optimization.  Consider a database with
ten nodes.  In eight of these nodes, the security requirements have been upheld but
the real-time performance has started to degrade.  The opposite is true of the
remaining two nodes.  Now, a conflict occurs between these last two nodes.  If the
database is globally optimized, the resource managers might decide to violate secu-
rity to help the overall real-time performance of the system.  This decision will have
little effect on the real-time performance of the eight nodes whose real-time perfor-
mance is degrading, and further the security problems on the two nodes where
security violations are a problem.

5  CONCLUSIONS

In this paper, we have presented mechanisms to allow the union of security and
real-time requirements in distributed database systems. An important part of this
union is the definition of partial security. The definition allows security violations
in order to improve real-time performance, yet does not entirely compromise the
security of the entire database system. However, database designers must be careful
with violations between transactions whose security levels differ greatly. If a viola-
tion is allowed between transactions, say, at the highest and lowest security levels,
no partial security remains in the system at all. In a system with many such con-
flicts, it may be very difficult to improve on real-time performance. However, it is
essential that the system designer can specify how to manage the system security
and real-time requirements in a controlled manner in real-world applications.

We have come up with a scheme that allows database designers to create rules at
whatever level of detail that they feel is appropriate.  These rules can then be ana-
lyzed by a tool, which allows designers to create a database and easily make con-
scious decisions about the partial security of the database.  The tool can also
automates the process of scanning through the complex dependencies of a database
specification to find conflicts.  It then informs the user of the consequences of vio-
lating security for each conflict.

Currently, we have a tool that can analyze transactions completely specified in
detail level 1. This tool parses a database description, analyzes the dependencies
and conflicts, and then goes through an interactive process with the user to create
rules for all possible conflicts. Our future work includes extending this tool to han-
dle rules and descriptions of levels 2 and 3. We are also developing a simulator to
investigate the performance of a database that uses the output of this tool, analyzing
the effects of different choices made by the user of the tool.
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